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S T R U C T U R E  OF A T U R B U L E N T  B O R E  IN A H O M O G E N E O U S  L I Q U I D  

V. Yu. Liapidevskii UDC 532.532 

A mathematical model for  the propagation of nonlinear long waves is constructed with allowance 
for nonhydrostatic pressure distribution and the development of a surface boundary layer due 
to wave breaking. The problem of  the structure of a bore in a homogeneous liquid is solved. 
In particular, the transition of a wave bore to a turbulent bore as its amplitude increases is 
described within a single model. 

I n t r o d u c t i o n .  The problems of the structure of stationary hydraulic jumps  and bores propagating 
at constant velocity are classicM problems in the hydraulics of open waterways. The key problem in the 
description of finite-amplitude waves involves modeling of wave breaking and development of a surface 
turbulent layer. This problem was studied theoretically and experimentally in [1-10]. 

In the present paper, the approach of [11, 12] for two-layer miscible liquids is used to study the evolution 
of breaking waves in a homogeneous liquid. The main idea here consists in using the full laws of conservation 
of mass, momentum, and energy to describe the dynamics of a surface turbulent layer, and it is assumed that 
the rate of drawing of the liquid from the lower layer depends on the turbulence level in the upper layer. A 
similar approach was employed in [9, 10], where the conditions of equilibrium between the generation and 
dissipation of turbulent energy in the upper layer are used instead of the equation of mass inflow into the 
turbulent layer. Therefore, the model of [9, 10] is an equilibrium model for the system of equations studied 
below with hydrostatic pressure distribution at the wave front. 

The effects due to nonh~;drostatic pressure distribution arise primarily for waves of moderate amplitude 
and lead to the wave structure of a bore. In the majority of models, the effect of nonhydrostatic pressure 
distribution on the wave shape is described using various versions of the Boussinesq and Korteweg-de Vries 
equations that result from the second shallow-water approximation [13]. 

In the present model, the terms describing the effects of nonhydrostatic pressure distribution are 
included in the equations in an unusual manner. The system of equations is hyperbolic, and the drawing of 
the liquid from the lower into the turbulent layer prevents the system from leaving the hyperbolic region. The 
model describes the formation of solitonlike waves propagating in a liquid at rest and the structure of a wave 
bore and its transition to a turbulent bore as the bore amplitude increases. 

M a t h e m a t i c a l  Model .  We consider planar flow of a thin layer of an ideal incompressible liquid over a 
horizontal bottom under gravity. The turbulent mixing caused by wave breaking is described by the equations 
of two-layer, shallow water [11]. Aeration of the flow is ignored, and, hence, the liquid density p is constant. 
The lower layer, in which the flow is considered potential, is characterized by two parameters: the mean depth 
h and the nonzero mean horizontal velocity u in the layer. The turbulent upper layer is specified by its depth 
'7, velocity v, and the root-mean-square velocity q of the turbulent flow. Under the assumption of hydrostatic 
pressure distribution in the layers, the equations of motion are written as 

(h -t- q)t -l- (hu -t- qv)~ = O, ut + (u2/2 + g(h ~r ~))z -- O, 
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(hu -i- rlv)t -t- (hu2 -4- rlV2 + ~ g(h + rl)2) z = O, (1.1) 

(hu 2 A" r/(v 2 A- q2) A- g(h + r/)2)t + (hu 3 -F r/(v 2 A- q2)v -4- 2g(h + rl)(hu + r/v))z= _~q3, ~t + (rlv)z = aq. 

System (1.1) contains the equations of two-layer shallow water written in the form of integral laws of 
conservation. The  energy equation is used to determine the law of drawing of the liquid from the lower layer in 
the turbulent layer, and the rate of drawing is assumed to be proportional to the velocity q. The proportionality 
coefficient a = 0.15 [14] characterizes the ratio of the vertical and horizontal scales of motion and d0es not 
affect the wave s t ructure  since it can~be excluded from the equations by extending the independent variables. 
The constant ~ specifies the rate of dissipation of turbulent kinetic energy. 

The s t ructure  of Eqs. (1.1). becomes clearer if they are written in nondivergent form 

ht + uhz + huz = -aq ,  tit + vrlz + rlVz = aq, ut + uu~ + ghz + grlz = O, 
(1.2) 

vt + vvz + ghz + grit = aq(u77 - v), qt + vqz = ~-~ ((u - v) 2 - (1 + 6)q2), 

where ~ = ~ /a  = const. 
Thus, system (1.2) or (1.1) contains the only essential dimensionless parameter ~ > 0, which should 

be chosen empirically. As shown below, system (1.2) is adequate for describing the structure of developed 
turbulent bores in a homogeneous liquid. 

2. S t r u c t u r e  o f  a T u r b u l e n t  B o r e .  We consider finite-amplitude disturbances that  propagate with 
constant velocity in an initially quiescent liquid. The  initial depth of the layer is h = h0, the velocity is u0 = 0, 
and a turbulent  interlayer is absent (r/0 = 0). It is required to describe traveling waves, i.e., waves of constant 
shape propagating at constant velocity D. The  only dimensionless parameter of the problem is the Froude 
number Fr = D / x / ~  (Fig. 1). 

It is known [13] that  in a shallow-water approximation ignoring mixing (o = 0), a traveling wave (bore) 
at all values of Fr > 1 represents a discontinuous solution that transforms the layer at rest into a homogeneous 
layer of constant depth  moving at constant velocity. On the discontinuity line, the laws of conservation of 
mass and m o m e n t u m  are fulfilled, and the total energy of the flow decreases. 

Solution of the  formulated problem using model (1.1) leads to a paradox due to the simultaneous use 
of the laws of conservation of mass, momen tum,  and energy in (1.1). Indeed, at first glance, a continuous 
solution different from the trivial solution for Fr > 1 cannot exist since the wave front moves at supercritical 
velocity. On the other  hand, in a discontinuous solution, by virtue of the relations at the jump,  the interlayer 
thickness directly behind the discontinuity must  equal zero, and, therefore, the laws of conservation of mass, 
momentum,  and energy cannot be fulfilled simultaneously for jumps of finite amplitude. 

As shown below, this paradox can be resolved by closer examination of the structure of flows with 
a turbulent layer. When the flow parameters in the upper layer near the front vary continuously, the liquid 
is accelerated, acquiring almost the wave velocity (v ,~ D). Thus, the flow characteristics overtake the wave 
front, and the s t ructure  of the turbulent bore can be described in the class of continuous solutions of system 
(1.i). 
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Let the solution of sys tem (1.1) depend only on the variable ~ = x - D t ,  where D > O. The homogeneous 
laws of conservation in (1.1) yield the relations 

h(u- o )  + ,7 ( , , -  D) = - h o D ,  ~(,~ - 0 )  2 + g(h +,7)  = D ~ + gho, 

1 1 (2.1) 
hu(~ - D) + ~ v ( ~ -  n )  + ~g(~ + ~)2 = ~ g h ] .  

In the dimensionless variables (h0 = 1 and g = 1), the quantities h,r/, and v are defined in the 
region of admissible values 0? > 0 and h > 0) as functions of the variable u (u > 0) and the parameter  
Fr = D / v / ~  = D > 1. In the  limit u --~ 0, we have h ~ h0 and 7/--* 0 by virtue of the continuity of the 
solution, but  in the limit r I ~ 0, system (2.1) strongly degenerates. The  limiting values v0 are obtained by 
differentiating system (2.1) with  respect to one of the variables, for example, h. We have two cases: 

(a) v0 = 0; (b) ~0 = D. 
Case (a) corresponds to the following exact solution of (2.1): h + r/ -- h0, u = v = 0. In case (b), 

the behavior of the solution of (2.1) in the plane (u, Q), where Q = r/(D - v), is illustrated by Fig. 2 for 
Fr = 2. The  limiting velocity ul  in the wave is attained for Q = hoD, for which the turbulent  layer reaches 
the bot tom.  Drawing ceases, the  depth and velocity in the wave remain constant,  and the turbulence level 
decreases, i.e., the turbulence degenerates throughout the depth of the liquid. 

Let us consider in more  detail the behavior of the root-mean-square velocity q of the turbulent  flow in 
the transition region of the  wave (0 < Q < hoD). It follows from Eqs. (1.1) tha t  the variables entering these 
system can be expressed as functions of one variable, for example, Q = r/(D - v) (0 < Q < hoD). Then, 
the inhomogeneous conservation laws (1.1) lead to the following system of ordinary differential equations for 
traveling waves: 

Q' = -aq,  Qq' = 2((1 + 6)q 2 -- f(Q)). (2.2) 

Here f (Q) = (u - v)2(Q), and the prime denotes differentiation with respect to (. The solution of this 
autonomous system can be found in quadratures since in the phase plane (Q, q2), system (2.2) reduces to the 
linear equation 

dq 2 
Q - ~  = f(Q) - (1 + 5)q 2. (2.3) 

The limited solution of (2.3) has the form 

Q 

q2(Q) = Q-(I+~) / 86q(s) ds, (2.4) 

0 
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and, hence, the limiting value q2(O) at the wave hollow is 

q2(0) = f (0) / (1  + 6). 

In case (a), q2 = 0 and the initial state is undisturbed. In case (b), q2(0) = v2(0)/(1 + 6) = D2/(1 + 6). 
Thus, mixing at constant rate begins at the wave hollow. The wave profile given by the functions 

h = h(~) and ~/= r/(~) can be found by virtue of (2.1) and (2.4) from the equation 

dQ 
-~- = aq(Q). 

According to (2.1), in a neighborhood of u = 0 the representation 

77 = (D2 -gho)UgD +o(u), v = D -  ~u+o(u), Q = (n22gD-gh~ +o(u2), q = D+O(u)  

is valid, and, hence, near the point ~ = 0, which corresponds to the position of the front, the functions h(~) 
and T/(~) have an integrable singularity [h(~) ,-~ I~11/2 and T/(~) ,,~ [~11/2 for ( < 0]. 

The structure of a turbulent bore in a homogeneous liquid for Fr = 2 is depicted in Fig.l, where the 
solid and dashed curves show the boundaries of the turbulent layer for ~ = 0 and g = 2, respectively. 

For Fr > 1, a continuous monotonic transition to another level z h occurs in a turbulent bore within a 
zone of finite length L (L = L0 for ~ = 0, and L = L2 for 6 = 2). As Fr increases, the length of the transition 
zone decreases. Clearly, the states in front of and behind the wave are related by ordinary shallow-water 
relations, which follows from the laws of conservation of mass and momentum [cf. (2.1)]: 

,71(vl - D)  = - h o D ,  - D)  + g,7  = - g h g ,  

and the energy equation is an additional condition that allows one to separate out physically admissible 
solutions with q~ ) 0. 

Summarizing the aforesaid, we can state that inclusion of mixing in the shallow-water equations allows 
us to solve the problem of the structure of a hydraulic jump in a homogeneous liquid. A drawback of the 
model is the hypothesis on hydrostatic pressure distribution throughout the zone of the jump, which prevents 
manifestation of the wave nature  of transition for Froude numbers close to unity. Below, the model is developed 
taking into account nonhydrostatic effects. In Sec. 3, a simpler hyperbolic shallow-water model than the one 
in [15] is derived with allowance for dispersion effects. 

3. Sha l low-Wager  E q u a t i o n s  w i t h  Dispe r s ion .  Equations of Motion. The equations of one-layer 
shallow water are derived for mean values of the depth h(~, z) and velocity u(t, x) of the homogeneous layer. 
In Secs. 1 and 2, the influence of surface waves and mixing on the flow structure was taken into account by 
introducing a turbulent interlayer. In this case, the pressure distribution was considered hydrostatic. This 
hypothesis is valid for waves and vortices whose scale is far less than the layer thickness. Propagation of 
disturbances of moderate amplitude in a liquid at rest gives rise to a packet of waves whose wavelength is 
comparable with the thickness of the homogeneous layer. That is, a wave (undulated) bore forms, and the 
nonhydrostatic pressure distribution at the wave front plays an important part in the formation of the bore. 
The structure of the wave bore is described using various versions of the Boussinesq and Korteweg-de Vries 
equations that correspond to the second shallow-water approximation [13]. The dispersion effects are modeled 
by terms that contain higher-order derivatives, so that the second approximation is no longer defined by the 
hyperbolic system of equations. 

The hyperbolic model of a dispersive medium arises when, along with mean flow characteristics such as 
depth h(t, z) and velocity u(t, x), internal variables, which characterize the state of flow at a point of interest, 
are used to describe nonequilibrium processes under gravity (Fig. 3). In this case, equal values of the mean 
and instantaneous parameters indicate an equilibrium state of the flow. 

Let ~(t, z) he the instantaneous depth and w(t, z) the vertical velocity of the liquid at the surface. The 
difference between the mean depth h(t, z) (solid curve) and the instantaneous depth r z) (dashed curve) 
of the homogeneous-liquid layer arises when a wave with a wavelength comparable with the spatial scale of 
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Fig. 3 

averaging used to obtain the mean depth h(t, x) travels in the liquid in the vicinity of the point x. In the 
averaged equations of motion, the effect due to the nonhydrostatic pressure distribution caused by short-wave 
generation at the fronts of nonlinear disturbances of the flow can be taken into account by means of the 
function p*, which gives the deficit of pressure on the bottom, as follows 

ht + (hu)z = O, ut + uuz + ghz + p~ = 0. (3.1) 

The nonhydrostatic pressure distribution in the liquid layer leads to the necessity of invoking the 
momentum equation for the vertical velocity in order to determine the function r = r x). In what follows, 
we assume that l ( /h  - 11 << 1. The equations for ~ and the vertical velocity w at the surface take the form 

r + u ~  = w, h(wt + uwz)  = 2p*. (3.2) 

Here the first equation gives the kinematic condition at the liquid surface, and the second is obtained by 
integration of the momentum equation for the vertical velocity over the entire layer with allowance for the 
nonpenetration condition at the bottom and the linear distribution of the vertical velocity across the layer 
depth. 

To close system (3.1), (3.2), it is required to express p* in terms of the required variables. By virtue of 
the smallness of the difference h - ( compared to h and from the conditions of equilibrium p*(h, h) = O, the 
dependence 

p* = c~g(h - ~) (3.3) 

seems to be rather general. The parameter a serves to fix the chosen scale of averaging in the model. As a --* 0, 
system (3.1) becomes independent of (3.2) and reduces to the standard shallow-water equations. This limiting 
case corresponds to a rather large averaging scale, and the other limit a --* cr corresponds to a decrease in 
the averaging scale. In this case, ~ = h, and the variable p* becomes nonevolutionary. The system obtained 
is equivalent to a Boussinesq equation that corresponds to the second shallow-water approximation. Thus, 
for finite values of a, system (3.1)-(3.3) gives a shallow-water approximation that  is intermediate between 
the first and the second approximations. It describes the dispersive properties as the second shallow-water 
approximation and preserves hyperbolicity as the first approximation. The choice of the parameter a in the 
equations corresponds to the choice of the averaging scale in the description of the waves generated at the front 
of a nonlinear bore. We note that  system (3.1)-(3.3) is similar in structure to the Iordanskii single-velocity 
model for a monodisperse bubble liquid [16]. 

The characteristics of system (3.1)-(3.3) have the form 

= = u + +  )gh. 
dt 

In addition, there is the multiple contact characteristic 

dz 
- - = A 0 = U .  
dt 

242 



The system in equilibrium (h _= ~) coincides with the ordinary shallow-water equations, and, hence, the 
characteristics of the sys tem in equilibrium are 

at 

Thus, in analyzing the wave structure in model (3.1)-(3.3), we are dealing with the classical case where the 
characteristics of the original and equilibrium models alternate: )~- < A[ < A0 < A + < A +, and, hence, 
smooth traveling waves (solitons) for the full system of equations exist in the velocity ranges A + < D < A + 
and A- < D < A: (see [13]). 

Traveling Waves Given by System (3.1)-(3.3). We assume that the solutions depend only on the variable 
= z - Dt (D > 0), and as ~ ~ ~ ,  the solution tends to the equilibrium solution: h0 = (0 and u0 = w0 = 0. 

As in the previous case, the  only dimensionless parameter  that  characterizes the wave is the Froude number 
Fr = D / ~ K o .  For a traveling wave, system (3.1)-(3.3) takes the form 

( h ( u -  D)) '  = O, u 2 -  D u  + (1 + a ) g h -  age  = O, 

(3.4) 
(u - D) ( '  = w, h(u - D ) w '  = 2ag(h - ~). 

Here the prime denotes differentiation with respect to the variable ~. System (3.4) leads to the relations 

1 u2 
h(u  - D )  = - h o D ,  ~ - D u  + (1 + v~)gh - otgr = gho, (3.5) 

from which the functions u = u(h)  and ~ = r can be obtained: 

u(h)  = D(h  - ho) G(h) 
w h ' ; (h)  = h ag (3.6) 

Here G(h) = p*(h) = g(h  - ho) + D2(h 2 - h2)/(2h2).  
We introduce the designation a(h) = d~(h) /dh  = 1 - (D2h2o/h 3 - g ) / ( a g ) .  With allowance for (3.5) 

and (3.6), system (3.4) takes the form 

Multiplying Eq. (3.7) by a ( h ) h ' / h ,  we obtain the integral 

1 D2 h = ( f ( h ) ) '  = (3.8) 
2 h 

The behavior of the funct ion 
h 

2G(s )a ( s )  ds 
F(h)  = ] 

J S 
h0 

in the vicinity of h0 determines the structure of the steady solution of (3.4). The function F ( h )  can be 
expressed via elementary functions, but to determine the domain of parameters in which solitons exist, it 
suffices to clarify the qual i tat ive behavior of this function in the vicinity of h0. The  traveling wave profile can 
be found from (3.8) in quadratures:  

h 
Dhoa(s )  ds = + J 

ho s ~ "  (3.9) 

The function a(h) = d ~ ( h ) / d h  vanishes at a single point h. ,  which corresponds to the minimum of the function 

C(h). We note that  h .  > h0 if D > ~/(1 + a)gho. From relation (3.9) it follows that  the necessary condition 
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for the existence of solution (3.8) is the positiveness of the function F(h) in the vicinity of h = h0. Since 

dR 2~g(h - r 
dh h ' 

the inequality 0 < a(ho) < 1, which ensures the positiveness of the function F(h) near the point h0, is fulfilled 
if 

< ~ < ~/(1 + ~)gh0 (3.10) 

Figure 4a gives a plot of the function F(h) for the velocity D which satisfies inequalities (3.10). 
For h > h0, the solution of system (3.4) is a soliton whose velocity is between the equilibrium and frozen 
propagation velocities of the characteristics, and the maximum depth is hm. The distribution of the mean 
depth h(~) and instantaneous depth ~(~) in the soliton is shown in Fig. 3. Recall that the difference h(~)-  r 
varies in proportion to the deficit of the wave pressure p*. For h < h0, the behavior of the function F(h) is 
similar to the case h > h0. This branch, however, does not give a soliton since, in passage through the point 
h = h,, the function a(h) changes sign, and solution (3.9) cannot be continued to the region h < h.. 

A smooth soliton of limiting amplitude occurs for D = ~/(1 + (~)gho (Fr = lvff-'+-'~). For D > 

~/(1 + a)gho, only a configuration of the jump-wave type is possible [161. This configuration consists of a 
hydraulic jump (bore) which transforms a layer of depth h0 into a layer of depth hi (hz ~ hi <~ hm) for 
F(hl) >1 O, and the adjacent periodic solution with maximum and minimum depths hz and h~, respectively 
(Fig. 4b). 

Since Eqs. (3.1)-(3.3) are written in nondivergent form, the choice of hydraulic jump relations that 
determine the value of hi behind the front is a separate problem and is not considered here. We note only 
that simultaneous consideration of dispersion and mixing (see Sec. 4) permits constructing a continuous wave 
profile for D > ~/(1 + a)gh0 as well. 

4.  Shal low-Water  Equa t ions  w i th  Dispersion and Mixing.  To combine the two approaches to 
modeling the effects of mixing and dispersion developed in Secs. 2 and 3, it suffices to assume that in a turbulent 
layer there is hydrostatic pressure distribution due to developed small-scale motion, and nonhydrostatic 
pressure distribution is manifested only in the lower homogeneous layer. Thus, system (3.1)-(3.3) is in fact 
supplemented by the equations of motion of a turbulent interlayer taking into account drawing. 

Equations of motion. The full system of equations takes the form 

h, + (h=)= = - ~ q ,  7, + (r  = ~q, u, + === + (1 + ~)gh= + g~= - ~gr = 0, 
aq 

vt+vv=+g(hz +T/x)=-~-(u-v) ,  qt+vqx= ~-~ ( (u - v )2 - - ( l  +5)q2), (4.1) 

2v~g( h - ~ ) 
~t + u~x = w ,  w t  + uw~  - h 

System (4.1) describes the flow of a homogeneous layer with a turbulent interlayer. Equations (1.2) are 
obtained from (4.1) in the limit a --* 0, and Eqs. (3.1)-(3.3) arise when 7 /~  0 and a = 0. 

Despite the appreciable extension of system (4.1) compared to (1.2), the introduction of new required 
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variables does not affect the hyperbolicity of the system. Moreover, the characteristics of (4.1) coincide with 
the characteristics of the system of equations for two-layered shallow water with densities p and (1 + a)p 
in the two layers (see [14]). Introduction of the variables ~ and w into system (4.1) yields only the multiple 
characteristic dx /d t  = u. Interestingly, for a homogeneous liquid, the characteristics of system (4.1) do not 
degenerate as happens with (1.2) since the effective density (1 + a)p of the lower layer no longer coincides 
with the density p of the interlayer. Therefore, the nonhydrostatic pressure distribution at the wave front 
exerts a certain stabilizing effect early in the development of the interlayer. Next, we shall discuss details of 
the solution of the problem of the structure of a traveling wave in a homogeneous liquid within the framework 
of the model (4.1). 

Structure of  a Turbulent Bore in a Homogeneous Liquid. We consider the traveling waves given by 
system (4.1). Let the solution depend on the variable ~ = x - Dt (D > 0). Designating derivatives with 
respect to ~ by primes, we obtain the system 

(h(u - D))' = - a q ,  (~(v - D))' = o'q, 

(v - n ) v '  + g(h' + ~7') = a~q( u - v), 

(u - D)u'  + (1 + a)gh' + gr I' - agC' = O, 
O" 

(v - D)q' = -~ ( (u  - v) 2 - (1 + 51q21, (4.2) 

(u - D)~' = w, h(u - D)w'  = 2ag(h - ~). 

It is required to find a continuous solution of (4.2) which, as ~ --* o~, has the following limits: h --* h0, ~ ~ h0, 
~ 0, u --~ 0, w ~ 0, v ~ 0, and q ~ 0. System (4.2) strongly degenerates as 77 ~ 0. Hence, to obtain the 

asymptotic behavior of the solution for high values of ~, we consider the semilinear system derived from (4.2) 
by linearization of the left-hand side on the degenerated solution h = h0, ~ = h0, 77 = 0, u = 0, w = 0, v = 0, 

(4.3) 

and q = 0. The right-hand side of Eqs. (4.2) remains unchanged: 

h0fi' - Dh' = - a ~ ,  - 9  0 = a~, -Off '  + (1 + a)gh' + gO' - ag~' = O, 

., a~(~ - 5) - D 4 '  a((fi - 9)2 _ (1 + 5)~ 2) 
- D + '  + g~' + g~ = ,) ' = 20 ' 

�9 - D ~ '  =5~, - D h o Y v ' =  2 a g ( h -  ~). 

Small perturbations of the main flow are denoted by the tilde. It should be noted that system (4.3) is 
homogeneous with respect to the perturbations, and, hence, its solutions are functions of the form 

h = he - ~ ,  ~ = ee - ~ ,  0 = 'ie - ~ ,  ~ = ~e - ~ ,  ~ = ~e - ~ ,  ~ = 0e - ~ ,  ~ = ~ e - ~  

for an appropriate positive value of ~. The parameter ~ is found from the algebraic system of equations 

Ah0~ - AD]~ = a0, ADr) = a0, ~(0~  - (1 + a)gh - g~ + ag~) = 0, 

AD~) - Agh - Ag~ = a0(fi - ~3) a((z~ - b) 2 - (1 + 6)9 2) 
0 , ~ D ~ =  20 ' (4.4) 

s162 = Fo, ADhoFo = 2ag(h - ~). 

Let cr # 0 and A # 0. Relations (4.4) can be rearranged as 

h 0 f i - n i = n T ) ,  n / t - ( l + a ) g h - g ~ + a g r  D ~ - g h - g T ) = D ( f i - ~ ) ,  

2 $ D ~  = o((fi - ~)2 _ (1 + 5)02), AD:I = 0"9, A2n2hor = 2ag(h - ~). (4.5) 

System (4.5) is nonlinear, and its trivial solution is ~t = ~ = ~ = fi = ~ = ~ = 0. To obtain the spectral 
relationship for $ for which there is a nontrivial physically admissible solution (~ > 0, h > 0, r > 0, ~ > 0, 
and A > 0), it suffices to express all required variables through one of them. From (4.5), we have 

2agh (gho - D2)O ~ = (gho + D2)(h + r)) 

= 2ag + ~2D2h0 < ]z, h = D 2 - (1 + a)gho + "r' 2Dho ' 
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(D 2 - gho)(h  + ~) AD~I (4.6) 
= (3 + 6 ) ~ 2 D ~  2 = a2(~  - ~)2, 

~ + 2Dho ' q = a ' 

where 7 = 2a2g2ho/ (2ag% A2D2h0) �9 Substituting the expressions of fi and ~3 in terms of ~ into the last relation 
of (4.6), we obtain the following equation for A: 

(D 2 - gh0)(7 - agho)  A 

D 2 h o ( D  2 - (1 + a)gho q- "7) - P 

where p = 4--a/(23v~-'+ 6). By virtue of (4.6), the quantity 7 also depends on A. Since only the value A > 0 is 
admissible, the final form of the equation for A is 

A2D2ho(D 2 - (1% a)gho)  - Apotgho(gho - D 2) + 2 a g ( D  2 - gho) = O. 

In the limit a ~ 0 (p ~ 0), we have 

I 2 a g ( D  2 - gho) 

A = D2h0((1 + a)gho - D2) ' 

and a solution of the solitary-wave type (soliton) exists in the range 

gho < D 2 < (1 + a)gho,  (4.7) 

as shown in Sec. 3. For a > 0, in the range of velocities (4.7), the physically admissible solution with ~ > 0, 
> 0, h > 0, and ~ > 0 is obtained for p = a / ( 2 v ~ +  6) and 

)~ =. pagho(gho - D ~) 
2D2ho(D 2 - (1 + a)gho)  

~/p2a2g2h2(gho - O2) ~ - 8ag(D 2 - gho)D2ho(D 2 - (1 + a)gho) (4.8) 
.~ Jr 2D2ho(D  2 - (1 + a)gho)  

Using the asymptotic relation obtained in the limit ~ --* vc, one can find the wave profile by numerical 
integration of system (4.2). As" noted above, for a ~ 0 and q ~ 0, the wave is a soliton. For a = 015, a = 1, 
and Fr = 1.2, the wave profile [h = h(~) and h + q = (h + r/)(~)] is shown in Fig. 5 at 6 = 0 (a) and 2 (b). 

As in the case of a turbulent bore (a  = 0), for a ~ 0 the interlayer reaches the bottom, and then 
homogeneous flow is attached to the wave. The wave profile, however, is no longer monotonic. As numerical 
calculations show, a smooth wave bore exists for Froude numbers 1 < Fr < Fr. < ~ (Fr. ,,, 1.3 for 
a = 1 and 6 = 0). Attaining the critical Froude number Fr., the determinant of system (4.2) vanishes at 
the wave front, i.e., the flow with the turbulent interlayer becomes critical at a certain point. The solution 
cannot be continued in a smooth fashion through the critical point. A weak hydraulic jump originates at the 
wave front. Analysis of the characteristics shows that this jump corresponds to the second mode, and for 
Fr. < Fr < x/1 + a, it moves from the crest toward the wave hollow. This reasoning is of a qualitative nature 
since system (4.2) is written in differential form, and to determine the location and amplitude of the jump 
uniquely, one should invoke additional relations at the discontinuity. The study of discontinuous solutions is 
beyond the scope of this work. It is worth noting, however, that the possibility of a hydraulic jump (roller) 
occurring at the wave crest and moving toward the wave hollow as the amplitude increases is in agreement 
with the breaking pattern of initially smooth waves observed in laboratory- and full-scale experiments at the 
moment when their limited amplitude is attained. 

We now dwell on the behavior of the dissipation-free solution (6 = 0) for Fr > ~/1 + a. For these 
Froude numbers, the asymptotic behavior of the wave front changes. Formula (4.8) in this case does not yield 
real values of ~ but there is a solution similar in structure to the turbulent bore considered in Sec. 2 for 
hydrostatic pressure distribution. Indeed, substituting the solution of system (4.2) as a functional dependence 
of the required functions, for example, the  velocity u = u(~), we obtain, as in Sec. 2 that,  as u ~ 0, the 

246 



a 

I 

-100 

D 
. - - - I = .  

- L  -50  0 

b D 

= , . . , . , . 2 3 ,  , h~ i ho= 1, 
-1oo -so o 

Fig. 5 

a b 

- ]o  o ,~ - lO 

Fig. 6 

ho=l 

! 

o 

solution of (4.2) has the limits h ~ ho, ~ ~ Co, 7 / ~  0, w ~ 0 but v --* D, and q -~ D. At the same time, 

I ho = + )gh0 (4.9) 
= g D  

From the second of relations (4.9) it follows that for Fr > ~/1 + a,  the function T/(~) should decrease in the 
vicinity of the wave front. As in Sec. 2, an integrable singularity arises at the bore front. Without loss of 
generality, we can assume that the front is localized at the point ~ = 0. In this case, h ,-, I~11/2 and ~7 ~ I~] 1/2, 
and the dependences h = h(~) and T/ = ~(~) can be found by integrating Eqs. (4.2) for ~ < 0. Numerical 
calculations for ~ = 1, cr = 0.15, and 6 = 0 show that, in the interval ~ < Fr < 2, there is no solution of 
(4.2) since the determinant of the system vanishes at a certain point ~0 < 0, where h(~0) > 0. For Fr > 2, 
a smooth solution can be constructed up to the moment the turbulent layer reaches the bottom. The wave 
profile for Fr = 2 and 3 is shown in Fig. 6a and b, respectively. 

For Fr < 2.5, the wave profile is not monotonic but the effect of the nonhydrostatic pressure distribution 
at the wave front becomes less pronounced as the Froude number increases, and at high values of Fr, the 
solution approaches the turbulent-bore structure studied in Sec. 2. 

Conc lus ions .  The model of a turbulent bore constructed here describes both the nonstationary 
development of nonlinear waves on the surface of a homogeneous liquid up to the moment of wave breaking and 
the structure of traveling waves or bores of arbitrary amplitude. For small amplitudes (Fr < 1.4 and a = 1), 
the nonhydrostatic effects play a leading part and a wave bore forms. For Fr > 1.4, a surface turbulent layer 
develops actively, and for Fr >,  2.5 the bore becomes monotonic. 

For 1 < Fr < Fr. ,,~ 1.3 and Fr > 2 (6 = 0), there is a continuous solution of system (4.2). In the 
range 1.3 <~ Fr < 2, a hydraulic jump, presumably of the second mode, develops at the front of the traveling 
wave. In this paper, the bore structure in this range of Fr was not considered since, to determine the location 
and amplitude of the hydraulic jump, it is necessary to specify certain relations at discontinuities. For system 
(4.1), this is impossible since this system is written in nondivergent form. We did not also touch on the effect 
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of dissipation on the bore structure. It was only shown that for 6 > 0, the structures of the fronts of the 
turbulent and wave bores remain qualitatively unchanged compared to the case ~ = 0. 

Finally, it should be noted that model (1.1) with hydrostatic pressure distribution at the front (a = 0) 
is an extension of the model of [10], where the energy equation was used to determine the interlayer thickness 

under the assumption that the production and dissipation of energy in the upper layer are at equilibrium 
q2 ,,, (u - v) 2. In model (1.1), the energy equation is used to determine q2 and the evolution of the turbulent 
layer is described by the equation for 7/[the last equation in (1.1)], in which the rate of drawing of the liquid 
from the lower layer is proportional to q. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 08-01- 
00750) and Program "Universities of Russia - -  Fundamental Research" (Grant No. 1787 3H-307-98). 
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